Abstract

Optimal power flow (OPF) represents one of the most important issues in the electrical power system for energy management, planning, and operation via finding optimal control variables with satisfying the equality and inequality constraints. Several optimization methods have been proposed to solve OPF problems, but there is still a need to achieve optimum performance. A Slime Mould Algorithm (SMA) is one of the new stochastic optimization methods inspired by the behaviour of the oscillation mode of slime mould in nature. The proposed algorithm is characterized as easy, simple, efficient, avoiding stagnation in the local optima and moving toward the optimal solution. Different frameworks have been applied to achieve single and conflicting multi-objective functions simultaneously (Bi, Tri, Quad, and Quinta objective functions) for solving OPF problems. These objective functions are total fuel cost of generation units, real power loss on transmission lines, total emission issued by fossil-fuelled thermal units, voltage deviation at load bus, and voltage stability index of the whole system. The proposed algorithm SMA has been developed by incorporating it with Pareto concept optimization to generate a new approach, named the Multi-Objective Slime Mould Algorithm (MOSMS), to solve multi-objective optimal power flow (MOOPF) problems. Fuzzy set theory and crowding distance are the proposed strategies to obtain the best compromise solution and rank and reduce a set of non-dominated solutions, respectively. To investigate the performance of the proposed algorithm, two standard IEEE test systems (IEEE 30 bus IEEE 57 bus systems) and a practical system (Iraqi Super Grid High Voltage 400 kV) were tested with 29 case studies based on MATLAB software. The optimal results obtained by the proposed approach (SMA) were compared with other algorithms mentioned in the literature. These results confirm the ability of SMA to provide better solutions to achieve the optimal control variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.