Abstract
BackgroundVirtually, all organisms on Earth have their own circadian rhythm, and humans are no exception. Circadian rhythms are associated with various human states, especially mood disorders, and disturbance of the circadian rhythm is known to be very closely related. Attempts have also been made to derive clinical implications associated with mood disorders using the vast amounts of digital log that is acquired by digital technologies develop and using computational analysis techniques.ObjectiveThis study was conducted to evaluate the mood state or episode, activity, sleep, light exposure, and heart rate during a period of about 2 years by acquiring various digital log data through wearable devices and smartphone apps as well as conventional clinical assessments. We investigated a mood prediction algorithm developed with machine learning using passive data phenotypes based on circadian rhythms.MethodsWe performed a prospective observational cohort study on 55 patients with mood disorders (major depressive disorder [MDD] and bipolar disorder type 1 [BD I] and 2 [BD II]) for 2 years. A smartphone app for self-recording daily mood scores and detecting light exposure (using the installed sensor) were provided. From daily worn activity trackers, digital log data of activity, sleep, and heart rate were collected. Passive digital phenotypes were processed into 130 features based on circadian rhythms, and a mood prediction algorithm was developed by random forest.ResultsThe mood state prediction accuracies for the next 3 days in all patients, MDD patients, BD I patients, and BD II patients were 65%, 65%, 64%, and 65% with 0.7, 0.69, 0.67, and 0.67 area under the curve (AUC) values, respectively. The accuracies of all patients for no episode (NE), depressive episode (DE), manic episode (ME), and hypomanic episode (HME) were 85.3%, 87%, 94%, and 91.2% with 0.87, 0.87, 0.958, and 0.912 AUC values, respectively. The prediction accuracy in BD II patients was distinctively balanced as high showing 82.6%, 74.4%, and 87.5% of accuracy (with generally good sensitivity and specificity) with 0.919, 0.868, and 0.949 AUC values for NE, DE, and HME, respectively.ConclusionsOn the basis of the theoretical basis of chronobiology, this study proposed a good model for future research by developing a mood prediction algorithm using machine learning by processing and reclassifying digital log data. In addition to academic value, it is expected that this study will be of practical help to improve the prognosis of patients with mood disorders by making it possible to apply actual clinical application owing to the rapid expansion of digital technology.
Highlights
BackgroundMood disorders, such as major depressive disorder (MDD) and bipolar disorder (BD), are common, with recurrent mood episodes and substantial chronicity
On the basis of the theoretical basis of chronobiology, this study proposed a good model for future research by developing a mood prediction algorithm using machine learning by processing and reclassifying digital log data
In addition to academic value, it is expected that this study will be of practical help to improve the prognosis of patients with mood disorders by making it possible to apply actual clinical application owing to the rapid expansion of digital technology
Summary
BackgroundMood disorders, such as major depressive disorder (MDD) and bipolar disorder (BD), are common, with recurrent mood episodes and substantial chronicity. Research based on digital technology and machine learning has recently been introduced. This new research methodology is expected to overcome many limitations of existing psychiatric research through the precise analysis of clinical information obtained from various digital phenotypes. Digital phenotyping allows us to more closely and continuously measure information on a variety of biometrics, such as mood, activity, heart rate, and sleep, in the patient’s daily life and to connect these with clinical symptoms. Circadian rhythms are associated with various human states, especially mood disorders, and disturbance of the circadian rhythm is known to be very closely related. Attempts have been made to derive clinical implications associated with mood disorders using the vast amounts of digital log that is acquired by digital technologies develop and using computational analysis techniques
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.