Abstract
Massive Open Online Course (MOOC) has become a popular way of online learning used across the world by millions of people. Meanwhile, a vast amount of information has been collected from the MOOC learners and institutions. Based on the educational data, a lot of researches have been investigated for the prediction of the MOOC learner’s final grade. However, there are still two problems in this research field. The first problem is how to select the most proper features to improve the prediction accuracy, and the second problem is how to use or modify the data mining algorithms for a better analysis of the MOOC data. In order to solve these two problems, an improved random forests method is proposed in this paper. First, a hybrid indicator is defined to measure the importance of the features, and a rule is further established for the feature selection; then, a Clustering-Synthetic Minority Over-sampling Technique (SMOTE) is embedded into the traditional random forests algorithm to solve the class imbalance problem. In experiment part, we verify the performance of the proposed method by using the Canvas Network Person-Course (CNPC) dataset. Furthermore, four well-known prediction methods have been applied for comparison, where the superiority of our method has been proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.