Abstract

Mechanistic modelling is gradually replacing empiricism in crop models, focusing on leaf-level physiological processes. This shift necessitates simulating crop surface temperature at infra-canopy sub-daily scales but many crop models still rely on empirical formulations for canopy temperature estimation, typically on a daily basis. We developed MONTPEL, a multi-component Penman-Monteith model that allows simulating the crop energy balance with flexible canopy representations (“BigLeaf” vs. “Layered”, “Lumped” vs. “Sunlit-Shaded”) and accounts for atmospheric stability conditions. We analyzed the model behavior, sensitivity and accuracy, using measurements from four wheat (Triticum aestivum L.) experiments conducted under varying pedoclimatic and water stress conditions. Measurements included hourly energy balance terms (total net radiation, soil heat flux, sensible and latent energy fluxes), hourly temperature of the canopy surface or of leaves at different depths inside the canopy, and sunlit and shaded leaf temperatures around solar noon at different dates. MONTPEL reproduced the measured energy balance terms with a root mean square error (RMSE) between 21 and 87 Wm-2 and a coefficient of determination (R²) exceeding 0.65. The model's accuracy in simulating canopy temperature, with RMSE ≤ 2.2 °C and R² ≥ 0.92, remained consistent regardless of measurement scale. Adjusting the aerodynamic resistance for atmospheric stability minimized simulated canopy temperature errors, notably in semi-arid conditions. Crop latent energy flux and temperature were most sensitive to the maximal stomatal conductance (gs,max) parameter. However, using a single gs,max value across the simulated experiments yielded satisfactory results, suggesting a weak sensitivity to the temporal and site-to-site variability of gs,max. Distinguishing sunlit from shaded canopy fractions systematically resulted in lower latent energy fluxes compared to “Lumped” canopy representation results. Analysis identified limitations in the multi-component approach, particularly an unrealistic uniform temperature shift across leaf layers when soil surface temperature changes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.