Abstract

The number field sieve is the most efficient known algorithm for factoring large integers that are free of small prime factors. For the polynomial selection stage of the algorithm, Montgomery proposed a method of generating polynomials which relies on the construction of small modular geometric progressions. Montgomery's method is analysed in this paper and the existence of suitable geometric progressions is considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.