Abstract

The number field sieve is the asymptotically fastest known algorithm for factoring large integers that are free of small prime factors. Two aspects of the algorithm are considered in this thesis: polynomial selection and smooth elements in number fields. The contributions to polynomial selection are twofold. First, existing methods of polynomial generation, namely those based on Montgomery's method, are extended and tools developed to aid in their analysis. Second, a new approach to polynomial generation is developed and realised. The development of the approach is driven by results obtained on the divisibility properties of univariate resultants. Examples from the literature point toward the utility of applying decoding algorithms for algebraic error-correcting codes to problems of finding elements in a ring with a smooth representation. In this thesis, the problem of finding algebraic integers in a number field with smooth norm is reformulated as a decoding problem for a family of error-correcting codes called NF-codes. An algorithm for solving the weighted list decoding problem for NF-codes is provided. The algorithm is then used to find algebraic integers with norm containing a large smooth factor. Bounds on the existence of such numbers are derived using algorithmic and combinatorial methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.