Abstract

We show that repulsive random variables can yield Monte Carlo methods with faster convergence rates than the typical N^{−1/2} , where N is the number of integrand evaluations. More precisely, we propose stochastic numerical quadratures involving determinantal point processes associated with multivariate orthogonal polynomials, and we obtain root mean square errors that decrease as N^{−(1+1/d)/2} , where d is the dimension of the ambient space. First, we prove a central limit theorem (CLT) for the linear statistics of a class of determinantal point processes, when the reference measure is a product measure supported on a hypercube, which satisfies the Nevai-class regularity condition; a result which may be of independent interest. Next, we introduce a Monte Carlo method based on these determinantal point processes, and prove a CLT with explicit limiting variance for the quadrature error, when the reference measure satisfies a stronger regularity condition. As a corollary, by taking a specific reference measure and using a construction similar to importance sampling, we obtain a general Monte Carlo method, which applies to any measure with continuously derivable density. Loosely speaking, our method can be interpreted as a stochastic counterpart to Gaussian quadrature, which, at the price of some convergence rate, is easily generalizable to any dimension and has a more explicit error term.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.