Abstract

The Probability Hypothesis Density (PHD) filter, which is used for multi-target tracking based on sensor measurements, relies on the propagation of the first-order moment, or intensity function, of a point process. This algorithm assumes that targets behave independently, an hypothesis which may not hold in practice due to potential target interactions. In this paper, we construct a second-order PHD filter based on Determinantal Point Processes (DPPs) which are able to model repulsion between targets. Such processes are characterized by their first and second-order moments, which allows the algorithm to propagate variance and covariance information in addition to first-order target count estimates. Our approach relies on posterior moment formulas for the estimation of a general hidden point process after a thinning operation and a superposition with a Poisson Point Process (PPP), and on suitable approximation formulas in the determinantal point process setting. The repulsive properties of determinantal point processes apply to the modeling of negative correlation between distinct measurement domains. Monte Carlo simulations with correlation estimates are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.