Abstract
An important yet challenging problem in LINAC-based rotational arc radiation therapy is the design of beam trajectory, which requires simultaneous consideration of delivery efficiency and final dose distribution. In this work, we propose a novel trajectory selection strategy by developing a Monte Carlo tree search (MCTS) algorithm during the beam trajectory selection process.To search through the vast number of possible trajectories, the MCTS algorithm was implemented. In this approach, a candidate trajectory is explored by starting from a leaf node and sequentially examining the next level of linked nodes with consideration of geometric and physical constraints. The maximum Upper Confidence Bounds for Trees, which is a function of average objective function value and the number of times the node under testing has been visited, was employed to intelligently select the trajectory. For each candidate trajectory, we run an inverse fluence map optimization with an infinity norm regularization. The ranking of the plan as measured by the corresponding objective function value was then fed back to update the statistics of the nodes on the trajectory. The method was evaluated with a chest wall and a brain case, and the results were compared with the coplanar and noncoplanar 4pi beam configurations.For both clinical cases, the MCTS method found effective and easy-to-deliver trajectories within an hour. As compared with the coplanar plans, it offers much better sparing of the OARs while maintaining the PTV coverage. The quality of the MCTS-generated plan is found to be comparable to the 4pi plans.Artificial intelligence based on MCTS is valuable to facilitate the design of beam trajectory and paves the way for future clinical use of non-coplanar treatment delivery.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have