Abstract
Thermally averaged rate coefficients for state-to-state rovibrational transitions and dissociation from individual states in Ar+para-H2 collisions at 4500 K are derived from Monte Carlo quasiclassical trajectory calculations. The problem of multidimensional interpolation of state-to-state rate constants is discussed, and the rate matrix is completed by nonlinear least-squares fitting. The relaxation time, the induction time, and the steady dissociation rate are calculated by a matrix eigenvalue solution of the master equation simulating a shock wave experiment on para-H2 dilute in Ar. Rotational–vibrational nonequilibrium effects are fully included. We have found that multiquantum transitions play a very significant role in determining the observable dissociation rate and that the master equation eigenmodes representing internal energy redistribution are little affected by the reaction process. The final steady dissociation rate is 2.8 times less than at local equilibrium. Various lumping schemes are tested, and we show that the original 162-state system can be well approximated by a 10-state model which predicts a factor of 2.4 for the nonequilibrium effect. However, we are unable to find equally successful models involving smaller numbers of states, and the popular vibrational ladder model and the corresponding rotational ladder model do not reproduce the full results even qualitatively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.