Abstract
Thermally averaged rate coefficients for vibrational state changes and dissociation from individual vibrational levels in H 2-Ar collissions at 4500 K are derived from Monte Carlo quasiclassical trajectory calculations. The rate matrix is completed by linear surprisal interpolation. Relaxation times, induction times, and steady dissociation rates simulating a shock wave experiment are calculated by a matrix-eigenvalue solution of the master equation. Rotational equilibrium is assumed, but vibrational nonequilibrium effects are included in full. The resulting steady dissociation rates are only about 30% less than at equilibrium.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.