Abstract

X-ray detectors based on straight-channel microchannel plates (MCPs) are a powerful diagnostic tool for two-dimensional, time-resolved imaging and time-resolved x-ray spectroscopy in the fields of laser-driven inertial confinement fusion and fast Z-pinch experiments. Understanding the behavior of microchannel plates as used in such detectors is critical to understanding the data obtained. The subject of this paper is a Monte Carlo computer code we have developed to simulate the electron cascade in a MCP under a static applied voltage. Also included in the simulation is elastic reflection of low-energy electrons from the channel wall, which is important at lower voltages. When model results were compared to measured MCP sensitivities, good agreement was found. Spatial resolution simulations of MCP-based detectors were also presented and found to agree with experimental measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.