Abstract

It is well known that free radical (co)polymerization of multivinyl monomers (MVMs) leads to insoluble gels even at a low monomer conversion, and the gelation point can be predicted by Flory–Stockmayer theory (F–S theory) based on two assumptions: (1) equal reactivity of all vinyl groups and (2) the absence of intramolecular cyclization. This theory has been experimentally studied and verified with conventional free radical (co)polymerization (FRP) of several MVMs (e.g., divinylbenzene, DVB). However, it is still debatable whether this theory is applicable for the polymerization of MVMs using reversible deactivation radical polymerization (RDRP) approaches, such as atom transfer radical polymerization (ATRP). Herein, Monte Carlo simulations using two statistical models—with cyclization (w.c.) and without cyclization (wo.c., corresponding to F–S theory)—and dynamic lattice liquid (DLL) models were conducted to study ATRP of divinyl monomers. The simulated gel points using w.c. and wo.c. models were compare...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call