Abstract

We have analyzed spin relaxation behavior of various II–VI semiconductors for nanowire structure and 2-D channel by simulating spin polarized transport through a semiclassical approach. Monte Carlo simulation method has been applied to simulate our model. D'yakonov–Perel mechanism and Elliot–Yafet mechanism are dominant for spin relaxation in II–VI semiconductors. Variation in spin relaxation length with external field has been analyzed and comparison is drawn between nanowire and 2-D channels. Spin relaxation lengths of various II–VI semiconductors are compared at an external field of 1 kV/cm to understand the predominant factors affecting spin dephasing in them. Among the many results obtained, most noticeable one is that spin relaxation length in nanowires is many times greater than that in 2-D channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.