Abstract

Thermal conductivities in bulk Si and Si films are analyzed using a Monte Carlo method to solve the phonon Boltzmann transport equation. By taking into account the realistic phonon dispersion relation calculated from the adiabatic bond charge model along with pure diffuse boundary scattering based on Lambert's law, simulated results that were in good agreement with the experimental ones were obtained. In addition, it was found that the approximated dispersion curves fitted along the [100] direction underestimate the density of states for mobile phonons, which results in a smaller specific heat and a longer phonon mean free path. The resulting impact on the simulation of heat transfer in nanostructures is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call