Abstract
The magnetization recovery of a two-dimensional ferromagnetic system after excitation by intensive ultrafast pump pulses is investigated by a Monte Carlo method with a focus on the evolution of domain structure and the magnetization in the equilibrium state. Our simulations can explain the effect of the pumping fluence on the recovery process. In particular, they reveal the importance of domain formation in the recently reported accumulation effect already found by the pump–probe magnetization hysteresis loop measurement of a metallic ferromagnetic film. In the framework of the model, it is predicted that by repeating pump pulses a sufficient number of times, the magnetization of the two-dimensional ferromagnetic system can be eliminated when the pump fluence is above a critical value.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have