Abstract

This paper describes a methodology to estimate embedded activity of (241)Am and Pu isotopes in a wound at an unknown depth. Theoretical calibration of an array of high-purity germanium detectors is carried out using the Monte Carlo code 'FLUKA' for a (241)Am source embedded at different depths in a soft tissue phantom of dimension 10 × 10 × 4 cm(3) simulating the palm of a worker. It is observed that, in the case of contamination due to pure (241)Am, the ratio of counts in 59.5 and 17.8 keV (Ratio 1) should be used to evaluate the depth, whereas the ratio of counts in 59.5 and 26.3 keV (Ratio 2) should be used when the contamination is due to a mixture of Pu and (241)Am compounds. Variations in the calibration factors (CFs) as well as in the Ratio 1 and Ratio 2 values are insignificant when source dimensions are varied from a point source to a 15-mm diameter circle. It is observed that tissue-equivalent polymethyl methacrylate material can be used in the phantom to estimate the embedded activity, when the activity is located at a depth of <1 cm, as the corresponding CFs do not show much variation with respect to those estimated using the phantom containing soft tissue material. In all other cases, an appropriate soft tissue-equivalent material should be used in the phantom for the estimation of CFs and ratios. The CFs thus obtained will be helpful in an accurate estimation of the depth of the wound and the activity embedded therein in the palm of a radiation worker.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.