Abstract

The characteristics of a seven-element hexagonal close-packed array of high-purity germanium detectors were measured. The energy resolution or full width at half maximum (FWHM) and full width at 10% maximum (FW.1M) were measured in both the uncoupled mode and the sum-coincidence mode between 333 keV and 2.612 MeV. The fractional peak efficiency improvement obtained in sum-coincidence mode compared with the uncoupled mode increased from 0% at 80 keV to 19.7% at 2.612 MeV. A Monte Carlo code developed to compare these results with theoretical models shows substantial agreement with experiments from 80 keV to 1.332 MeV. A description of the detector, signal processing electronics, data acquisition system, and software is given. A technique based on real-time compensation of gain and offset drift is developed to minimize the peak broadening in real-time sum-coincidence spectra. This technique allows data acquisition to commence shortly after turn-on while the system approaches temperature stabilization. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.