Abstract

Due to their global availability, neutron monitors play a crucial role in measuring time variations in the Galactic cosmic ray flux. A portable calibration neutron monitor (CalMon) is useful for intercalibrating various neutron monitors to ensure accurate measurements. A common technique to ensure that the calibration is done in a consistent environment is to place the CalMon at some height above a wide container (such as a portable swimming pool) filled with water. This study investigates the impact of CalMon height and water depth on the count rate ratio relative to a standard 18NM64 count rate recorded nearby (CalMon/18NM64). We compare simulated data from the FLUKA Monte Carlo package to experimental data from [1] to demonstrate the statistical accuracy of our simulation. Using the simulation results, we then extend the study of the proximity-to-water effect on the counting rate. In this work, we present a preliminary empirical model by analyzing the CalMon/18NM64 as a function of CalMon to water distance. Overall, our study enhances understanding of the response of calibration monitors (now often called “mini-neutron monitors”) operated in various locations worldwide, and validates the Monte Carlo techniques used to model the response of the global neutron monitor network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.