Abstract
AbstractNeutron monitors are the premier instruments for precisely tracking time variations in the Galactic cosmic ray flux at GeV‐range energies above the geomagnetic cutoff at the location of measurement. Recently, a new capability has been developed to record and analyze the neutron time delay distribution (related to neutron multiplicity) to infer variations in the cosmic ray spectrum as well. In particular, from time delay histograms we can determine the leader fraction L, defined as the fraction of neutrons that did not follow a previous neutron detection in the same tube from the same atmospheric secondary particle. Using data taken during 2000–2007 by a shipborne neutron monitor latitude survey, we observe a strong dependence of the count rate and L on the geomagnetic cutoff. We have modeled this dependence using Monte Carlo simulations of cosmic ray interactions in the atmosphere and in the neutron monitor. We present new yield functions for the count rate of a neutron monitor at sea level. The simulation results show a variation of L with geomagnetic cutoff as observed by the latitude survey, confirming that these changes in L can be attributed to changes in the cosmic ray spectrum arriving at Earth's atmosphere. We also observe a variation in L with time at a fixed cutoff, which reflects the evolution of the cosmic ray spectrum with the sunspot cycle, known as solar modulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.