Abstract
In this study, thermal (2.53*10-8 MeV) and fast (2 MeV) neutron total macroscopic cross-sections of paraffin, polycarbonate, and polyester matrix polymers doped with B4C, B2O3, Sm2O3, and Gd2O3 (at weight percentages of 5%, 10%, 15%, 20%, and 25%) were computed by using Monte Carlo simulations. Additionally, the macroscopic effective removal cross-section ) of fast neutrons was theoretically computed based on the mass removal cross-section values ) for various elements in polymers and additives. The obtained results show that the highest thermal neutron total macroscopic cross-section was obtained in polycarbonate doped with Gd2O3, and the highest fast neutron total macroscopic cross-section was observed in paraffin doped with Sm2O3. Besides, the paraffin provided the highest fast neutron total macroscopic cross-section for all additives. The results of this study provide a good understanding of shielding properties of paraffin, polycarbonate, and polyester matrix polymers doped with B4C, B2O3, Sm2O3, and Gd2O3 against thermal and fast neutrons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.