Abstract

Despite all advantages associated with high-energy radiotherapy to improve therapeutic gain, the production of photoneutron via interaction of high-energy photons with high atomic number (Z) materials increases undesired dose to the patient and staff. Owing to the limitation and complication of experimental neutron dosimetry in mixed beam environment, including photon and neutron, the Monte Carlo (MC) simulation is a gold standard method for calculation of photoneutron contaminations. On the other hand, the complexity of treatment head makes the MC simulation more difficult and time-consuming. In this study, the possibility of using a simplified MC model for the simulation of treatment head has been investigated using MCNP4C general purpose MC code. As a part of comparative assessment strategy, the fluence, average energy and dose equivalent of photoneutrons were estimated and compared with other studies for several fields and energies at different points in treatment room and maze. The mean energy of photoneutrons was 0.17, 0.19 and 0.2 MeV at the patient plan for 10, 15 and 18 MeV, respectively. The calculated values differed, respectively, by a factor of 1.4, 0.7 and 0.61 compared with the reported measured data for 10, 15 and 18 MeV. Our simulation results in the maze showed that the neutron dose equivalent is attenuated by a factor of 10 for every 4.6 m of maze length while the related factor from Kersey analytical method is 5 m. The neutron dose equivalent was 4.1 mSv Gy(-1) at the isocentre and decreased to 0.79 mSv Gy(-1) at a distance of 100 cm away from the isocentre for 40 x 40 cm(2). There is good agreement between the data calculated using simplified model in this study and measurements. Considering the reported high uncertainties (up to 50%) in experimental neutron dosimetry, it can be concluded that the simplified model can be used as a useful tool for estimation of photoneutron contamination associated with high-energy photon radiotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call