Abstract

The composition of exhausted gas is a key parameter in long-pulse plasma fusion experiments, and its evolution shall be monitored at timescales relevant to plasma dynamics and plasma-wall interactions. A diagnostic residual gas analyzer (DRGA) is a multisensor instrument particularly suited to these studies, and ITER will adopt DRGAs in the equatorial and in the divertor tokamak regions. In this work, we have revisited the design of the ITER divertor DRGA through simple vacuum analytical considerations supported by simulations conducted with Molflow+, a test particle Monte Carlo (TPMC) simulation code commonly used in the particle accelerator community. Starting with recommendations on the manufacturing of the vacuum piping of the DRGA, this work is followed by a complete vacuum characterization of the diagnostic vacuum setup (pressure profiles at base pressure and during sampling, orifice diameter, and length optimization), and finally, the in-vessel residence time of the most important gas species is simulated. These studies have allowed us to give insights into some experimental results recently found on the prototype DRGA installed in the Wendelstein W7-X stellarator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.