Abstract
A mathematical model is developed to evaluate the monotonic and cyclic behavior of concrete-filled steel tube (CFST) beam-columns with rectangular cross section. The model includes the reduction in the steel compressive strength due the local buckling effect. The degradations in unloading and reloading stiffness of steel tube due to local buckling are also included. The model is based on fiber element method in which uniaxial stress–strain material laws are used for cross section components. The results obtained from the mathematical model were compared with experimental results for columns under monotonic as well as cyclic loads. It is observed that the proposed model predicts well the columns and beams nonlinear behavior compared with the experimental results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have