Abstract

Many important resource allocation problems involve the combinatorial assignment of items, e.g., auctions or course allocation. Because the bundle space grows exponentially in the number of items, preference elicitation is a key challenge in these domains. Recently, researchers have proposed ML-based mechanisms that outperform traditional mechanisms while reducing preference elicitation costs for agents. However, one major shortcoming of the ML algorithms that were used is their disregard of important prior knowledge about agents' preferences. To address this, we introduce monotone-value neural networks (MVNNs), which are designed to capture combinatorial valuations, while enforcing monotonicity and normality. On a technical level, we prove that our MVNNs are universal in the class of monotone and normalized value functions, and we provide a mixed-integer linear program (MILP) formulation to make solving MVNN-based winner determination problems (WDPs) practically feasible. We evaluate our MVNNs experimentally in spectrum auction domains. Our results show that MVNNs improve the prediction performance, they yield state-of-the-art allocative efficiency in the auction, and they also reduce the run-time of the WDPs. Our code is available on GitHub: https://github.com/marketdesignresearch/MVNN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.