Abstract

The analysis of the Quality of Service (QoS) level in a Cloud Computing environment becomes an attractive research domain as the utilization rate is daily higher and higher. Its management has a huge impact on the performance of both services and global Cloud infrastructures. Thus, in order to find a good trade-off, a Cloud provider has to take into account many QoS objectives, and also the manner to optimize them during the virtual machines allocation process. To tackle this complex challenge, this article proposed a multiobjective optimization of four relevant Cloud QoS objectives, using two different optimization methods: a Genetic Algorithm (GA) and a Mixed Integer Linear Programming (MILP) approach. The complexity of the virtual machine allocation problem is increased by the modeling of Dynamic Voltage and Frequency Scaling (DVFS) for energy saving on hosts. A global mixed-integer non linear programming formulation is presented and a MILP formulation is derived by linearization. A heuristic decomposition method, which uses the MILP to optimize intermediate objectives, is proposed. Numerous experimental results show the complementarity of the two heuristics to obtain various trade-offs between the different QoS objectives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call