Abstract

Upcoming technologies in the fields of flexible electronics require the cost-efficient fabrication of complex circuitry in a streamlined process. Digital printing techniques such as inkjet printing can enable such applications thanks to their inherent freedom of design permitting the mask-free deposition of multilayer optoelectronic devices without the need for subtracting techniques. Here we present an active matrix sensor array comprised of 100 inkjet-printed organic thin film transistors (OTFTs) and organic photodiodes (OPDs) monolithically integrated onto the same ultrathin substrate. Both the OTFTs and OPDs exhibited high-fabrication yield and state-of-the-art performance after the integration process. By scaling of the OPDs, we achieved integrated pixels with power consumptions down to 50 nW at one of the highest sensitivities reported to date for an all-organic integrated sensor. Finally, we demonstrated the application potential of the active matrix by static and dynamic spatial sensing of optical signals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.