Abstract

This device consists of a five-layer transverse-junction-stripe laser structure monolithically integrated with an external three-layer waveguide. The transverse p-n junction within the laser cavity permits the use of a vertical p-n junction in the external waveguide for future implementation of a modulator without disturbing the laser operation. As a result, this structure allows for flexibility in the design of the external waveguide/modulator without resorting to complicated regrowth procedures. Design curves for two different types of optical cavities are presented, and the reflectivity and transmission of the etched facet as a function of active layer thickness is modeled in detail using an excitation field approach. Finally, integrated laser/waveguide devices are fabricated based on this design and are compared to the theoretical curves. Most devices had threshold currents between 60 and 80 mA, while laser-to-waveguide transmission coefficients were as high as 38%.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.