Abstract

Two major types of optical cavities are in wide-use today: photonic crystals and optical microcavities. However, both of these systems have major drawbacks. Photonic crystals only operate for a certain range of wavelengths while optical microcavities can only trap light for a certain range of angles determined by the microcavity angle of total internal reflection. Here, new types of optical cavities are proposed and investigated, aiming to resolve these problems by providing Lyapunov-stable photon orbits within a specially designed inhomogeneous isotropic/anisotropic media. These types of optical traps, referred to as a Continuous Index Photon Traps (CIPTs), seek to exploit recent advances in the field of optics. Specifically, nanofabricating artificial optical materials, i.e. metamaterials, that can bend light and entrap photons in a finite spatial domain. The CIPT’s potential to provide stable photon orbits is assessed. Material realizations of the proposed photon traps are suggested and their optical properties including cavity Q-factors and decay rates are estimated. Potentialy important practical applications of the CIPTs would include optical cavities that trap light withough use of refraction index discontiniuties and hence have low scattering losses due to surface roughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.