Abstract

In-tube solid-phase microextraction (SPME) has successfully been coupled to capillary LC, and further an automated in-tube SPME system has been developed using a commercially available HPLC auto-sampler. However, an open tubular capillary column with a thick film of polymer (stationary phase) is unfavorable because the ratio of the surface area of coating layer contacted with sample solution to the volume of the capillary column is insufficient for mass transfer. A highly efficient SPME column is, therefore, required. We introduced a C 18-bonded monolithic capillary column that was used for in-tube SPME. The column consisted of continuous porous silica having a double-pore structure. Both the through-pore and the meso-pore were optimized for in-tube SPME, and the optimized capillary column was connected to an HPLC injection valve for characterization. The results demonstrated that the pre-concentration efficiency is excellent compared with the conventional in-tube SPME. The novel method for both introduction and concentration of the samples was effective, satisfactory and suitable for use in the SPME medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call