Abstract
GaN high electron mobility transistors (HEMTs) were monolithically integrated with silicon CMOS to create a functional current mirror circuit. The integrated circuit was fabricated on 100 mm diameter modified silicon-on-insulator (SOI) wafers incorporating a resistive (111) silicon handle substrate and a lightly doped (100) silicon device layer. In a CMOS-first process, the CMOS was fabricated using the (100) device layer. Subsequently GaN was grown by plasma molecular beam epitaxy in windows on the (111) handle substrate surface without wire growth despite using gallium-rich growth conditions. Transmission lines fabricated on the GaN buffer/SOI wafer exhibited a microwave loss of less than 0.2 dB/mm up to 35 GHz. Direct current measurements on GaN HEMTs yielded a current density of 1.0 A/mm and transconductance of 270 mS/mm. At 10 GHz and a drain bias of 28 V, 1.25 mm long transistors demonstrated a small signal gain of 10.7 dB and a maximum power added efficiency of 53% with a concomitant power of 5.6 W. The silicon and GaN transistors were interconnected to form high yield test interconnect daisy chains and a monolithic current mirror circuit. The CMOS output drain current controlled the GaN transistor quiescent current and consequently the microwave gain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.