Abstract
Titanates exhibit electronic properties highly desirable for field effect transistors such as very high permittivity and ferroelectricity. However, the difficulty of chemically etching titanates hinders their commercial use in device manufacturing. Here, the authors report the selective area in finestra growth of highly crystalline BaTiO3 (BTO) within photolithographically defined openings of a sacrificial SiO2 layer on a Ge (001) wafer by molecular beam epitaxy. After the BaTiO3 deposition, the sacrificial SiO2 can be etched away, revealing isolated nanoscale gate stacks circumventing the need to etch the titanate thin film. Reflection high-energy electron diffraction in conjunction with scanning electron microscopy is carried out to confirm the crystallinity of the samples. X-ray diffraction is performed to determine the out-of-plane lattice constant and crystal quality of the BTO film. Electrical measurements are performed on electrically isolated Pt/BaTiO3/SrTiO3/Ge capacitor devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.