Abstract
We report on a direct epitaxial growth approach for the heterogeneous integration of high-speed III–V devices with Si CMOS logic on a common Si substrate. InP-based heterojunction bipolar transistor (HBT) structures were successfully grown on Si-on-lattice-engineered- substrate (SOLES) and Ge-on-insulator-on-Si (GeOI/Si) substrates using molecular beam epitaxy. Structurally, the epiwafers exhibit sharp interfaces and a threading dislocation density of 3.5×10 7 cm −2 as measured by plan-view transmission electron microscopy. HBT devices fabricated on GeOI/Si substrates have current gain of 55–60 at a base sheet resistance of 650–700 Ω/sq, and f t and f max of around 220 GHz. HBT structures with DC and RF performance similar to those grown on lattice-matched InP were also achieved on patterned SOLES substrates with growth windows as small as 15×15 μm 2. These results demonstrate a promising path of heterogeneous integration and selective placement of III–V devices at arbitrary locations on Si CMOS wafers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.