Abstract
Significant progress has been made recently in demonstrating that silicon photonics is a promising technology for low-cost optical detectors, modulators and light sources1,2,3,4,5,6,7,8,9,10,11,12. It has often been assumed, however, that their performance is inferior to InP-based devices. Although this is true in most cases, one of the exceptions is the area of avalanche photodetectors, where silicon's material properties allow for high gain with less excess noise than InP-based avalanche photodetectors and a theoretical sensitivity improvement of 3 dB or more. Here, we report a monolithically grown germanium/silicon avalanche photodetector with a gain–bandwidth product of 340 GHz, a keff of 0.09 and a sensitivity of −28 dB m at 10 Gb s−1. This is the highest reported gain–bandwidth product for any avalanche photodetector operating at 1,300 nm and a sensitivity that is equivalent to mature, commercially available III–V compound avalanche photodetectors. This work paves the way for the future development of low-cost, CMOS-based germanium/silicon avalanche photodetectors operating at data rates of 40 Gb s−1 or higher. A monolithically grown Ge/Si avalanche photodetectors (APD) with a gain–bandwidth product of 340 GHz, the highest value for any APDs operating at 1,300 nm, and a sensitivity equivalent to commercially available III-V compound APDs is reported. The excellent performance paves the way to achieving low-cost, CMOS-based, Ge/Si APDs operating at data rates of 40 Gb s−1 or higher, where the performance of III-V APDs is severely limited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.