Abstract
We report on a micromachined monolithic Fabry–Perot wavelength tunable filter with a thick moving structure operated by an electrothermal actuation. The monolithic structure simplifies the fabrication process and the electrothermal actuation mechanism reduces the required operation voltage. For the wet etching of the AlGaAs sacrificial layer, an HCl-based solution rather than a HF-based one was used because it results in a larger selectivity between the AlxGa1-xAs layers and less damage to the suspended structure. The wavelength tuning range of the 7.64-µm-thick structure was 47 nm for the power consumption of 5 mW, which results in the high tuning efficiency of ∼9.9 nm/mW. The wide tuning range of 81.2 nm for the 5.2-µm-thick structure, that is not possible with an electrostatic actuation mechanism due to the occurrence of breakdown, is achieved at the driving voltage below 5.7 V. Due to the simplicity of fabrication and the ease of integration, this structure is advantageous for use in wavelength tunable light sources and photodetectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.