Abstract

2D molybdenum disulfide (MoS2) has shown promising prospects for the next generation electronics and optoelectronics devices. The monolayer MoS2 can be patterned into quasi‐1D anisotropic MoS2 nanoribbons (MNRs), in which theoretical calculations have predicted novel properties. However, little work has been carried out in the experimental exploration of MNRs with a width of less than 20 nm where the geometrical confinement can lead to interesting phenomenons. Here, MNRs are prepared with width between 5 and 15 nm by direct helium ion beam milling. High optical anisotropy of these MNRs is revealed by the systematic study of optical contrast and Raman spectroscopy. The Raman modes in MNRs show strong polarization dependence. Besides that the E′ and A′1 peaks are broadened by the phonon‐confinement effect, the modes corresponding to singularities of vibrational density of states are activated by edges. The peculiar polarization behavior of Raman modes can be explained by the anisotropy of light absorption in MNRs, which is evidenced by the polarized optical contrast. The study opens the possibility to explore quasi‐1D materials with high optical anisotropy from isotropic 2D family of transition metal dichalcogenides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.