Abstract
Monogalactosyldiacylglycerol (MGDG) is the most abundant lipid component of the thylakoid membrane. Although MGDG is believed to be important in sustaining the structure and function of the photosynthetic membrane, its exact role in photosynthesis in vivo requires further investigation. In this study, the transgenic tobacco plant M18, which has an MGDG deficiency of approximately 53%, and which contains many fewer thylakoid membranes and exhibits retarded growth and a chlorotic phenotype, was used to investigate the role of MGDG. Chlorophyll fluorescence analysis of the M18 line revealed that PSII activity was inhibited when the plants were exposed to light. The inactive linear electron transport found in M18 plants was mainly attributed to a block in the intersystem electron transport process that was revealed by P700 redox kinetics and PSI light response analysis. Immunoblotting and Blue Native SDS-PAGE analysis suggested that a reduction in the accumulation of cytochrome b6f in M18 plants is a direct structural effect of MGDG deficiency, and this is likely to be responsible for the inefficiency observed in intersystem electron transport. Although drastic impairments of PSII subunits were detected in M18 plants grown under normal conditions, further investigations of low-light-grown M18 plants indicated that the impairments are not direct structural effects. Instead, they are likely to result from the cumulative photodamage that occurs due to impaired photostability under long-term exposure to relatively high light levels. The study suggests that MGDG plays important roles in maintaining both the linear electron transport process and the photostability of the PSII apparatus.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have