Abstract

This paper presents recent results from our continued development of a 0.5 T whole-body MRI magnet at the Francis Bitter Magnet Laboratory. HyperTech Research Corp. (Columbus, OH) manufactures the MgB2 conductor for this project. During the past year, we have found that our technique, originally developed successfully to splice unreacted multifilament MgB2 wires, works much better, i.e., of higher reliability, with unreacted monofilament MgB2 wires. This has led us to wind the entire coil components in our persistent-mode MRI magnet with unreacted monofilament MgB2 wire, having a MgB2 core of 0.4 mm in diameter, an overall diameter of 0.8 mm bare, 1 mm S-glass insulated. To verify that these coils would not suffer from flux jumping, as they would if wound with monofilament NbTi wire, magnetization studies were performed on monofilament wires of MgB2 and NbTi (as a reference) at 4.2 K. For the monofilament MgB2 wire, the results were affirmative. To further ensure the absence of flux jumping that may quench these current-carrying coils, two test coils were wound with unreacted monofilament MgB2 wire. One MgB2 coil was operated in driven mode, while the other MgB2 coil, equipped with a persistent current switch and terminated with a superconducting joint, was operated in persistent mode. The operating temperature range was 4.2-15 K for these MgB2 coils. The driven mode coil was operated in self-field. The persistent mode coil achieved a persistent current of 100 A, corresponding to a self-field of ~1 T in the winding, for 1 hour with no measurable decay. Both test coils were operated quench free.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.