Abstract

Abstract We describe a new geometric model for the Hochschild cohomology of Soergel bimodules based on the monodromic Hecke category studied earlier by the first author and Yun. Moreover, we identify the objects representing individual Hochschild cohomology groups (for the zero and the top degree cohomology this reduces to an earlier result of Gorsky, Hogancamp, Mellit and Nakagane). These objects turn out to be closely related to explicit character sheaves corresponding to exterior powers of the reflection representation of the Weyl group. Applying the described functors to the images of braids in the Hecke category of type A we obtain a geometric description for Khovanov–Rozansky knot homology, essentially different from the one considered earlier by Webster and Williamson.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.