Abstract

• CB/Co@C nanocomposites composed of sustainable carbon black and anchored Co@C nanoparticles have been successfully synthesized. • As a novel lightweight electromagnetic wave absorber, the optimal RL min and EAB of -53.989 dB and 6.0 GHz were achieved at thin thickness. • A reasonable absorption mechanism was proposed according to various loss mechanism induced by different components. Recently, developing carbon-based hybrid materials loaded with magnetic components has been generally regarded as a promising and practically feasible strategy when it comes to constructing lightweight electromagnetic wave absorbers. In the current work, reclaimed carbon black (CB) nanopowder was firstly produced by simple burning of wheat straw, which was then employed as sustainable carbon-based host materials (carrier) and successfully decorated Co@C nanoparticles via a simple thermal reduction process. Remarkably, both the as-fabricated nanocomposites and corresponding electromagnetic wave absorption performances could be effectively tuned by tailoring the dosage of the Co@C nanoparticles. The minimum reflection loss (RL min ) of –53.989 dB was achieved for CB/Co@C-2# at 2.28 mm thickness, meanwhile, CB/Co@C-3# was featured by a wide effective absorption band (EAB) of 6 GHz (6.72–12.72 GHz) at a 2.73 mm matching thickness, which covered the entire X band, suggesting that the CB/Co@C nanocomposites were an attractive candidate for electromagnetic wave absorber. According to the synergistic influence of dielectric loss and magnetic loss from CB and Co@C, respectively, as well as the properly matched impedance, a reasonable electromagnetic wave attenuation mechanism was illustrated. It is noteworthy that the preparation process of CB is a facile, recycled, and low-cost strategy for achieving nanoscale carbon-based absorbing materials, moreover, the CB/Co@C nanocomposites provide a reference for constructing lightweight dielectric-magnetic products with superb electromagnetic wave absorption performances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call