Abstract

Developing high-performance narrow-bandgap (NBG) perovskite solar cells based on tin-lead (Sn-Pb) perovskite is critical for the advancement of all-perovskite tandem solar cells. However, the limitations of the device current density and efficiency are magnified by the issues concerning poor carrier transport caused by a substantial number of defects in thick NBG films. This problem is further exacerbated by the quality of film crystallization, which is associated with the rapid and uncontrolled crystallization of Sn-rich perovskite chemistry using the antisolvent approach. We regulate the crystallization of Sn-contained perovskite with a mild gas-quench approach to fabricate a highly crystal-oriented and well-arranged NBG perovskite absorber. This strategy effectively boosts electron transport and light absorption of the NBG perovskite. Consequently, the average power conversion efficiency (PCE) of the NBG perovskite solar cells increases from 19.50 % to 21.18 %, with the best device achieving an excellent PCE of 21.84 %. Furthermore, when combined with a wide-bandgap perovskite subcell to form an all-perovskite tandem solar cell, a PCE of 25.23 % is achieved. After being stored in the glovebox for 1000 h, the unencapsulated device maintains over 90 % of its initial PCE, demonstrating long-term stability and durability. This work presents a promising approach for developing high-efficiency NBG perovskite solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.