Abstract

HypothesisIt is possible to generate fairly monodisperse liquid foams by a dispersion cell, which was originally designed for the generation of fairly monodisperse emulsions. If this is the case, scaling-up the production of monodisperse liquid and solid foams will be no longer a problem. ExperimentsWe used the dispersion cell - a batch process - and examined the influence of stirrer speed, membrane pore diameter and injection rate on the structure of the resulting liquid foams. We used an aqueous surfactant solution as scouting system. Once the experimental conditions were known we generated gelatin-based liquid foams and methacrylate-based foamed emulsions. FindingsWe found that (a) the bubble size of the generated liquid foams can be adjusted by varying the membrane pore diameter, (b) no stirrer should be used to obtain monodisperse foams, and (c) the bubble size is not influenced by the air injection rate. Since (i) the output for all investigated systems is up to two orders of magnitude larger compared to microfluidics and (ii) the membrane technology can very easily be scaled-up if run in a continuous process, the use of membrane foaming is expected to be heavily used for the generation of monodisperse liquid and solid foams, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call