Abstract

We demonstrate a novel monocrystalline high-performance thermistor material based on SiGe quantum well heterostructures. The SiGe/Si quantum wells are grown epitaxially on standard Si [001] substrates. Holes are used as charge carriers utilizing the discontinuities in the valence band structure. By optimizing design parameters such as the barrier height (by variation of the germanium content) and the fermi level Ef (by variation of the quantum well width and doping level) of the material, the layer structure can be tailored. Then a very high temperature coefficient of resistivity (TCR) can be obtained which is superior to the previous reported conventional thin film materials such as vanadium oxide and amorphous silicon. In addition, the high quality crystalline material promises very low 1/f-noise characteristics promoting an outstanding signal to noise ratio as well as well defined and uniform material properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call