Abstract
Atherosclerosis is triggered by the retention of apolipoprotein B-containing lipoproteins by proteoglycans. In addition to low-density lipoprotein, remnant lipoproteins have emerged as pivotal contributors to this pathology, particularly in the context of insulin resistance and diabetes. We have previously reported antiatherogenic properties of a monoclonal antibody (chP3R99) that recognizes sulfated glycosaminoglycans on arterial proteoglycans. Solid-phase assays demonstrated that chP3R99 effectively blocked >50% lipoprotein binding to chondroitin sulfate and vascular extracellular matrix invitro. The preperfusion of chP3R99 (competitive effect) resulted in specific antibody-arterial accumulation and reduced fluorescent lipoprotein retention by ~60% in insulin resistant JCR:LA-cp rats. This competitive reduction was dose dependent (25-250 μg/mL), effectively decreasing deposition of cholesterol associated with lipoproteins. In a 5-week vaccination study in insulin resistant rats with (200 μg subcutaneously, once a week), chP3R99 reduced arterial lipoprotein retention, and was associated with the production of antichondroitin sulfate antibodies (Ab3) able to accumulate in the arteries (dot-blot). Neither the intravenous inoculation of chP3R99 (4.5 mg/kg), nor the immunization with this antibody displayed adverse effects on lipid or glucose metabolism, insulin resistance, liver function, blood cell indices, or inflammation pathways in JCR:LA-cp rats. Both acute (passive) and long-term administration (idiotypic cascade) of chP3R99 antibody reduced low-density lipoprotein and remnant lipoprotein interaction with proteoglycans in an insulin-resistant setting. These findings support the innovative approach of targeting proatherogenic lipoprotein retention by chP3R99 as a passive therapy or as an idiotypic vaccine for atherosclerosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.