Abstract
The understanding of immunological processes associated with allergic diseases and advancements in antibody bioengineering has driven the development of specific biological therapies. Monoclonal antibodies, selectively targeting cytokines involved in the pathogenesis of allergic processes or their receptors, have emerged as a promising tool in treating various conditions, including asthma, allergic rhinitis, urticaria, and severe atopic dermatitis. Since the approval of the first anti-CD3 mouse monoclonal antibody in 1986, remarkable progress has been achieved, marked by the development of chimeric, 'humanized,' and 'fully human' antibodies. The 'humanization' of monoclonal antibodies has played a crucial role in reducing the risk of immunogenicity and minimizing adverse effects, thereby notably enhancing the safety and efficacy of these therapeutic interventions. The aim of this article is to address the characterization, development, pharmacokinetics, pharmacodynamics, and clinical utility of monoclonal antibodies, with a primary focus on allergic diseases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have