Abstract

Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance.

Highlights

  • Brown algae are a large and diverse class of organisms which dominate most temperate coastal environments

  • Together with BAM1 to BAM4, two previously described antibodies were found to bind to cell wall materials derived from brown algae

  • monoclonal antibodies (MAbs) BAM3 shows a preference for the fucoidan sample over FS28 and, at low antibody dilution it does not produce as high a signal as the other fucan-directed MAbs, it has a 50% of maximum signal titre that is >600

Read more

Summary

Introduction

Brown algae are a large and diverse class of organisms which dominate most temperate coastal environments. They fulfil important roles as primary producers within intertidal zones, and are key ecological players in some marine environments by being the first recruited species for the organization and structuring of ecosystems. The development of the filamentous Ectocarpus siliculosus as a genetic model organism for brown algae [3] has paved the way for studies on different aspects of brown algal biology including early morphogenesis and life cycles [4,5], response to abiotic change [6] and evolution of species [7,8]. Brown algal polymers have been used in high-capacity lithium ion batteries [10], to produce nanoparticles with enhanced delivery efficiency for gene and drug delivery [11] in addition to processes for the production of ethanol [12,13,14]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call