Abstract

The mononuclear complex [Ru(PPh(3))(2)(CO)(2)(L(1))] (1; H(2)L(1) = 7,8-dihydroxy-6-methoxycoumarin) and the dinuclear complexes [[Ru(PPh(3))(2)(CO)(2)](2)(L(2))][PF(6)] [[2][PF(6)]; H(3)L(2) = 9-phenyl-2,3,7-trihydroxy-6-fluorone] and [[Ru(PBu(3))(2)(CO)(2)](2)(L(3))] (3; H(4)L(3) = 1,2,3,5,6,7-hexahydroxyanthracene-9,10-dione) have been prepared; all complexes contain one or two trans,cis-[Ru(PR(3))(2)(CO)(2)] units, each connected to a chelating dioxolene-type ligand. In all cases the dioxolene ligands exhibit reversible redox activity, and accordingly the complexes were studied by electrochemistry and UV/vis/NIR, IR, and EPR spectroscopy in their accessible oxidation states. Oxidation of 1 to [1](+) generates a ligand-centered semiquinone radical with some metal character as shown by the IR and EPR spectra. Dinuclear complexes [2](+) and 3 show two reversible ligand-centered couples (one associated with each dioxolene terminus) which are separated by 690 and 440 mV, respectively. This indicates that the mixed-valence species [2](2+) has greater degree of electronic delocalization between the ligand termini than does [3](+), an observation which was supported by IR, EPR, and UV/vis/NIR spectroelectrochemistry. Both [2](2+) and [3](+) have a solution EPR spectrum consistent with full delocalization of the unpaired electron between the ligand termini on the EPR time scale (a quintet arising from equal coupling to all four (31)P nuclei); [3](+) is localized on the faster IR time scale (four CO vibrations rather than two, indicative of inequivalent [Ru(CO)(2)] units) whereas [2](2+) is fully delocalized (two CO vibrations). UV/vis/NIR spectroelectrochemistry revealed the presence of a narrow, low-energy (2695 nm) transition for [3](+) associated with the catecholate --> semiquinone intervalence transition. The narrowness and solvent-independence of this transition (characteristic of class III mixed-valence character) coupled with evidence for inequivalent [Ru(CO)(2)] termini in the mixed-valence state (characteristic of class II character) place this complex at the class II-III borderline, in contrast to [2](2+) which is clearly class III.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.