Abstract

A current outbreak of the monkeypox viral infection, which started in Nigeria, has spread to other areas of the globe. This affects over 28 nations, including the United Kingdom and the United States. The monkeypox virus causes monkeypox (MPX), which is comparable to smallpox and cowpox (MPXV). The monkeypox virus is a member of the Poxviridae family and belongs to the Orthopoxvirus genus. In this work, a novel fractional model for Monkeypox based on the Caputo derivative is explored. For the model, two equilibria have been established: disease-free and endemic equilibrium. Using the next-generation matrix and Castillo’s technique, if [Formula: see text] the global asymptotic stability of disease-free equilibrium is shown. The linearization demonstrated that the endemic equilibrium point is locally asymptotically stable if [Formula: see text]. Using the parameter values, the model’s fundamental reproduction rates for both humans and non-humans are calculated. The existence and uniqueness of the solution are proved using fixed point theory. The model’s numerical simulations demonstrate that the recommended actions will cause the infected people in the human and non-human populations to disappear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.