Abstract

To monitor the fluctuations of dimethyl sulfur compounds at the seawater/atmosphere interface, an automated system was developed based on sequential injection analysis coupled with vapor generation-ion molecule reaction mass spectrometry (SIA-VG-IMRMS). Using this analytical system, dissolved dimethyl sulfide (DMS(aq)) and dimethylsulfoniopropionate (DMSP), a precursor to DMS in seawater, were monitored together sequentially with atmospheric dimethyl sulfide (DMS(g)). A shift from the equilibrium point between DMS(aq) and DMS(g) results in the emission of DMS to the atmosphere. Atmospheric DMS emitted from seawater plays an important role as a source of cloud condensation nuclei, which influences the oceanic climate. Water samples were taken periodically and dissolved DMS(aq) was vaporized for analysis by IMRMS. After that, DMSP was hydrolyzed to DMS and acrylic acid, and analyzed in the same manner as DMS(aq). The vaporization behavior and hydrolysis of DMSP to DMS were investigated to optimize these conditions. Frequent (every 30 min) determination of the three components, DMS(aq)/DMSP (nanomolar) and DMS(g) (ppbv), was carried out by SIA-VG-IMRMS. Field analysis of the dimethyl sulfur compounds was undertaken at a coastal station, which succeeded in showing detailed variations of the compounds in a natural setting. Observed concentrations of the dimethyl sulfur compounds both in the atmosphere and seawater largely changed with time and similar variations were repeatedly observed over several days, suggesting diurnal variations in the DMS flux at the seawater/atmosphere interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.