Abstract
Rail track derailment has been proven to be the cause of most of the rail accidents in recent years. High-temperature strains in railways caused by rail traction and thermal variation are the main causes of derailment, which lead to buckling. The likelihood of passenger deaths and maintenance costs will be reduced if thermal strains and failure in rails are detected early. This research attempts to provide a preventative strategy for detecting thermal strains and deformation caused by temperature fluctuations at railways. Using the electromechanical impedance (EMI) technique, piezoelectric sensors were used to acquire piezo coupled structural signatures for lab-sized rail samples, i.e. plain rail and rail joints, for gradual temperature escalation and repeat heat cycle. The experimental conductance signatures were obtained for the incremental rise in temperature (30–80 °C) in ambient conditions, and repetitive thermal cycles. To better diagnose structural problems induced only by the effect of heat on the host structure, thermal compensation is proposed. The piezo–coupled signatures for thermal changes in rail and rail junctions (weld and bolt) were found to be particularly effective in detecting incipient structural alterations for both steady and cyclic temperature variations. Statistical damage index was used to quantify the damage for all types of rail-joint bar caused due to temperature variation. Overall, this study has paved an experimental technique that can be used to detect early damage in rail and rail joints due to thermal loading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.